| 注册
首页|期刊导航|神经损伤与功能重建|Sulforaphane Protects Astrocytes Against Oxidative Stress and Delayed Death Caused by Oxygen and Glucose Deprivation

Sulforaphane Protects Astrocytes Against Oxidative Stress and Delayed Death Caused by Oxygen and Glucose Deprivation

CAMELIA A.DANILOV KRISH CHANDRASEKARAN JENNIFER RACZ LUCIAN SOANE CAROL ZIELKE AND GARY FISKUM

神经损伤与功能重建2009,Vol.4Issue(2):114-124,135,12.
神经损伤与功能重建2009,Vol.4Issue(2):114-124,135,12.

Sulforaphane Protects Astrocytes Against Oxidative Stress and Delayed Death Caused by Oxygen and Glucose Deprivation

Sulforaphane Protects Astrocytes Against Oxidative Stress and Delayed Death Caused by Oxygen and Glucose Deprivation

CAMELIA A.DANILOV 1KRISH CHANDRASEKARAN 2JENNIFER RACZ 1LUCIAN SOANE 3CAROL ZIELKE 1AND GARY FISKUM3

作者信息

  • 1. Department of Anesthesiology,University of Maryland School of Medicine,Baltimore,Maryland
  • 2. Program in Neuroscience,University of Maryland School of Medicine,Baltimore,Maryland
  • 3. Department of Pediatrics,University of Maryland School of Medicine,Baltimore,Maryland
  • 折叠

摘要

Abstract

Oxidative stress is an important molecular mechanism of astrocyte injury and death following ischemia/reperfusion and may be an effective target of intervention. One therapeutic strategy for detoxifying the many different reactive oxygen and nitrogen species that are produced under these conditions is induction of the Phase II gene response by the use of chemicals or conditions that promote the translocation of the transcriptional activating factor NRF2 from the cytosol to the nucleus, where it binds to genomic antioxidant response elements. This study tested the hypothesis that pre- or post-treatment of cultured cortical astrocytes with sulforaphane, an alkylating agent known to activate the NRF2 pathway of gene expression protects against death of astrocytes caused by transient exposure to O2 and glucose deprivation (OGD). Rat cortical astrocytes were exposed to 5 μM sulforaphane either 48 h prior to, or for 48 h after a 4-h period of OGD. Both pre- and post-treatments significantly reduced cell death at 48 h after OGD. Immunostaining for 8-hydroxy-2-deoxyguanosine, a marker of DNA/RNA oxidation, was reduced at 4 h reoxygenation with sulforaphane pretreatment. Sulforaphane exposure was followed by an increase in cellular and nuclear NRF2 immunoreactivity. Moreover, sulforaphane also increased the mRNA, protein level, and enzyme activity of NAD(P)H/Quinone Oxidoreductase1, a known target of NRF2 transcriptional activation. We conclude that sulforaphane stimulates the NRF2 pathway of antioxidant gene expression in astrocytes and protects them from cell death in an in vitro model of ischemia/reperfusion.  2008 Wiley-Liss, Inc.

关键词

缺氧再灌注/NRF2/NQO1/氧化应激/8-hydroxy-2-deoxyguanosine

Key words

ischemia/reperfusion/NRF2/NQO1/oxidative stress/8-hydroxy-2-deoxyguanosine

分类

医药卫生

引用本文复制引用

CAMELIA A.DANILOV,KRISH CHANDRASEKARAN,JENNIFER RACZ,LUCIAN SOANE,CAROL ZIELKE,AND GARY FISKUM..Sulforaphane Protects Astrocytes Against Oxidative Stress and Delayed Death Caused by Oxygen and Glucose Deprivation[J].神经损伤与功能重建,2009,4(2):114-124,135,12.

神经损伤与功能重建

OACSTPCD

1001-117X

访问量0
|
下载量0
段落导航相关论文