| 注册
首页|期刊导航|数学杂志|具调节因子Hermite拟谱逼近的误差估计

具调节因子Hermite拟谱逼近的误差估计

赵廷刚

数学杂志2009,Vol.29Issue(1):15-20,6.
数学杂志2009,Vol.29Issue(1):15-20,6.

具调节因子Hermite拟谱逼近的误差估计

ERROR ESTIMATE FOR SCALED HERMITE PSEUDO-SPECTRAL APPROXIMATIONS

赵廷刚1

作者信息

  • 1. 兰州城市学院数学系,甘肃,兰州,730070;上海大学理学院,上海,200444
  • 折叠

摘要

Abstract

Pseudo-spectral approximation of a function in terms of the scaled Hermite functions in certain weighted Sobolev spaces is analyzed. By using properties of the scaled Hermite polynomials and the corresponding Gauss-type quadrature formula, an stability estimate for the interpolation operator on zeros of the scaled Hermite polynomials is obtained. Also error estimate for the interpolation operator is obtained. The results show that the scaled Hermite pseudo-spectral approximation shares high accuracy.

关键词

Scaled Hermite多项式/求积公式/拟谱逼近

Key words

Scaled Hermite polynomials/quadrature formula/pseudo-spectral approximation

分类

数理科学

引用本文复制引用

赵廷刚..具调节因子Hermite拟谱逼近的误差估计[J].数学杂志,2009,29(1):15-20,6.

数学杂志

OA北大核心CSCDCSTPCD

0255-7797

访问量0
|
下载量0
段落导航相关论文