| 注册
首页|期刊导航|海南师范学院学报(自然科学版)|和矩阵相关联的偏序集的跳跃数

和矩阵相关联的偏序集的跳跃数

侯新民 游林

海南师范学院学报(自然科学版)2001,Vol.14Issue(1):1-6,6.
海南师范学院学报(自然科学版)2001,Vol.14Issue(1):1-6,6.

和矩阵相关联的偏序集的跳跃数

On the Jump Number of Posets From Matrices

侯新民 1游林2

作者信息

  • 1. 大连理工大学应用数学系,
  • 2. 海南师范学院数学系,
  • 折叠

摘要

Abstract

Let A = (αij)heanm×nmatrix. There is a natural way to associate a poset PA with A .Let X = {x1,x2, ,xm|and Y = {y1,y2,…yn| be disjoint sets of m andn elements, respectively, and define xi < yj if and only if αij ≠0. The Hasse diagram of poset PA is the usual bipartite graph of A with vertex set X U Y drawn with the y′s above the x′s, and PA is called a bipartite poset. The jump [stair]number of a poset is the minimum [rnaximum]number of junps [stairs]in any linear extension of PA . (A jump in a linear extension of PA is a pair of consecutive dements which are incoomparable in PA , otherwise, we call it a stair of PA . ) In this paper, we investigate the jump number of bipartite poset and its relation to the Hasse diagram structure. We give a recursive algorithm to determine the stair number of PA which is motivated by consideration of the Hasse cliagram of PA .

关键词

矩阵/偏序集

分类

数理科学

引用本文复制引用

侯新民,游林..和矩阵相关联的偏序集的跳跃数[J].海南师范学院学报(自然科学版),2001,14(1):1-6,6.

海南师范学院学报(自然科学版)

1674-4942

访问量0
|
下载量0
段落导航相关论文