| 注册
首页|期刊导航|光学精密工程|抗混叠Curvelet变换非高斯双变量模型图像降噪

抗混叠Curvelet变换非高斯双变量模型图像降噪

闫河 潘英俊 刘加伶 赵明富

光学精密工程2009,Vol.17Issue(7):1774-1781,8.
光学精密工程2009,Vol.17Issue(7):1774-1781,8.

抗混叠Curvelet变换非高斯双变量模型图像降噪

Image denoising using non-Gaussian bivariate model based on non-aliasing Curvelet transform

闫河 1潘英俊 2刘加伶 1赵明富2

作者信息

  • 1. 重庆大学,光电技术及系统教育部重点实验室,重庆,400044
  • 2. 重庆理工大学,计算机学院,重庆,400054
  • 折叠

摘要

Abstract

A new image denoising method using a non-Gaussian bivariate model in a Complex Curvelet Transform(CCT) domain is presented.For avoiding the shift-variance and under-sampling during the 1D inverse Fourier transform in the traditional Curvelet transform ,a new Curvelet transform, Complex Curvelet Transform(CCT), is proposed by adopting the complex wavelet transform and reformative Radon transform to replace the traditional wavelet transform and the old Radon transform respectively,which provides a non-aliasing property for the proposed method. Because the inter-scale correlation of a signal coefficient is stronger than those of noise coefficients,the non-Gaussian bivariate model is used for capturing inter-scale correlation of the signal coefficient and for obtaining the denoised coefficient from the noisy image decomposition by a Bayesian MAP estimator.Experimental results show that the Peak Signel Noise Rotio(PSNR) of the proposed algorithm is averagely higher about 2.9 dB and 1.5 dB than those of the traditional Curvelet transform denoising method and Curvelet domain HMT denoising method respectively at all noise levels.The proposed method avoids "scratching" and "embedded blemishes" phenomena in the reconstructed image,and achieves an excellent balance between suppressing noises effectively and preserving image details and edges as many as possible.

关键词

图像去噪/复数Curvelet变换/抗混叠/非高斯双变量模型

Key words

image denoising/complex Curvelet transform/non-aliasing/non-Gaussian bivariate model

分类

信息技术与安全科学

引用本文复制引用

闫河,潘英俊,刘加伶,赵明富..抗混叠Curvelet变换非高斯双变量模型图像降噪[J].光学精密工程,2009,17(7):1774-1781,8.

基金项目

国家自然科学基金资助项目(No.50876120) (No.50876120)

重庆市科委自然科学基金资助项目( No. CSTC,No.2008BB2340) ( No. CSTC,No.2008BB2340)

重庆市教委科学技术研究项目(N0.KJ080621) (N0.KJ080621)

光学精密工程

OA北大核心CSCDCSTPCD

1004-924X

访问量0
|
下载量0
段落导航相关论文