| 注册
首页|期刊导航|自动化学报|基于测地距离的支持向量机分类算法

基于测地距离的支持向量机分类算法

全勇 杨杰

自动化学报2005,Vol.31Issue(2):202-208,7.
自动化学报2005,Vol.31Issue(2):202-208,7.

基于测地距离的支持向量机分类算法

Geodesic Distance for Support Vector Machines

全勇 1杨杰1

作者信息

  • 1. Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai 200030
  • 折叠

摘要

Abstract

When dealing with pattern recognition problems one encounters different types of prior knowledge. It is important to incorporate such knowledge into classification method at hand. A very common type of prior knowledge is many data sets are on some kinds of manifolds. Distance based classification methods can make use of this by a modified distance measure called geodesic distance.We introduce a new kind of kernels for support vector machines which incorporate geodesic distance and therefore are applicable in cases such transformation invariance is known. Experiments results show that the performance of our method is comparable to that of other state-of-the-art method.

关键词

Support vector machine/geodesic distance/kernel function

Key words

Support vector machine/geodesic distance/kernel function

分类

信息技术与安全科学

引用本文复制引用

全勇,杨杰..基于测地距离的支持向量机分类算法[J].自动化学报,2005,31(2):202-208,7.

基金项目

Supported by National Natural Science Foundation of P. R. China (50174038, 30170274) (50174038, 30170274)

自动化学报

OA北大核心CSCD

0254-4156

访问量0
|
下载量0
段落导航相关论文