| 注册
首页|期刊导航|中国电机工程学报|基于人工神经网络的变压器绝缘模型放电模式识别的研究

基于人工神经网络的变压器绝缘模型放电模式识别的研究

姜磊 金显贺

中国电机工程学报2001,Vol.21Issue(1):21-24,4.
中国电机工程学报2001,Vol.21Issue(1):21-24,4.

基于人工神经网络的变压器绝缘模型放电模式识别的研究

ANN BASED DISCHARGE PATTERN RECOGNITION OF INSULATION MODELS OF ELECTRICAL TRANSFORMERS

姜磊 1金显贺1

作者信息

  • 1. 清华大学电机工程系,北京 100084
  • 折叠

摘要

Abstract

The main discharge types in insulation of electrical transformers were analysed, 7 kinds of experimental models simulating discharges in electrical transformers and 3 kinds of models simulating interfering discharges in air were designed and model experiments under some circumstances were performed. Using digital measuring device, the quantity-phase information of discharge pulse current of models were obtained. The feature of discharge was extracted using the 3D pattern chart and the artificial neural networks was used to recognize the discharge models. The investigation shows that ANN has enough ability to recognize different types of discharge of oil-paper insulation in transformers.

关键词

变压器绝缘/局部放电/人工神经网络/模式识别

Key words

transformer insulation/partial discharge/ANN(artificial neural network)/pattern recognition

分类

信息技术与安全科学

引用本文复制引用

姜磊,金显贺..基于人工神经网络的变压器绝缘模型放电模式识别的研究[J].中国电机工程学报,2001,21(1):21-24,4.

基金项目

国家自然科学基金资助项目(59637200)。 (59637200)

中国电机工程学报

OA北大核心CSCD

0258-8013

访问量0
|
下载量0
段落导航相关论文