| 注册
首页|期刊导航|中国科学院研究生院学报|Hammerstein模型基于神经网络的预测控制方法

Hammerstein模型基于神经网络的预测控制方法

向微 盛捷 陈宗海

中国科学院研究生院学报2008,Vol.25Issue(2):224-232,9.
中国科学院研究生院学报2008,Vol.25Issue(2):224-232,9.

Hammerstein模型基于神经网络的预测控制方法

Model predictive control based on neural networks for Hammerstein type nonlinear systems

向微 1盛捷 1陈宗海1

作者信息

  • 1. 中国科学技术大学自动化系,合肥,230027
  • 折叠

摘要

Abstract

The Hammerstein model is composed of a nonlinear static element and a linear dynamic element serially, and it proves to be effective in describing the behavior of many chemical processes. By appropriate identification, the intricate nonlinear control problem of this model can be facilitated into two problems: the control of the linear part and the solution of the nonlinear part. In this paper, a model predictive control scheme is proposed, which uses a set of neural networks to approximate the inverse mapping of the nonlinear block. This neural networks method needn't assume that the nonlinear block is a polynomial equation, thus it overcomes the difficulty that no real roots exist for the polynomial equation. Two simulation examples, including a pH neutralization process, are used to demonstrate the effectiveness of the method.

关键词

模型预测控制/Hammerstein模型/神经网络

Key words

model predictive control/ Hammerstein model/ neural networks

分类

信息技术与安全科学

引用本文复制引用

向微,盛捷,陈宗海..Hammerstein模型基于神经网络的预测控制方法[J].中国科学院研究生院学报,2008,25(2):224-232,9.

中国科学院研究生院学报

OA北大核心CSCDCSTPCD

2095-6134

访问量0
|
下载量0
段落导航相关论文