| 注册
首页|期刊导航|自动化学报|一种基于独立性测试和蚁群优化的贝叶斯网学习算法

一种基于独立性测试和蚁群优化的贝叶斯网学习算法

冀俊忠 张鸿勋 胡仁兵 刘椿年

自动化学报2009,Vol.35Issue(3):281-288,8.
自动化学报2009,Vol.35Issue(3):281-288,8.DOI:10.3724/SP.J.1004.2009.00281

一种基于独立性测试和蚁群优化的贝叶斯网学习算法

A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization

冀俊忠 1张鸿勋 1胡仁兵 1刘椿年1

作者信息

  • 1. Beijing MunicipalKey Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, P. R. China
  • 折叠

摘要

Abstract

To solve the drawbacks of the ant colony optimization for learning Bayesian networks (ACO-B), this paper proposes an improved algorithm based on the conditional independence test and ant colony optimization (I-ACO-B). First, the I-ACO-B uses order-0 independence tests to effectively restrict the space of candidate solutions, so that many unnecessary searches of ants can be avoided. And then, by combining the global score increase of a solution and local mutual information between nodes, a new heuristic function with better heuristic ability is given to induct the process of stochastic searches. The experimental results on the benchmark data sets show that the new algorithm is effective and efficient in large scale databases, and greatly enhances convergence speed compared to the original algorithm.

关键词

Uncertainty modeling/Bayesian network structure learning/ant colony optimization (ACO)/conditional independence test

Key words

Uncertainty modeling/Bayesian network structure learning/ant colony optimization (ACO)/conditional independence test

分类

信息技术与安全科学

引用本文复制引用

冀俊忠,张鸿勋,胡仁兵,刘椿年..一种基于独立性测试和蚁群优化的贝叶斯网学习算法[J].自动化学报,2009,35(3):281-288,8.

基金项目

Supported by National Natural Science Foundation of China 60496322), Natural Science Foundation of Beijing (4083034), and cientific Research Common Program of Beijing Municipal Com-mission of Education (KM200610005020) (4083034)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量4
|
下载量0
段落导航相关论文