| 注册
首页|期刊导航|应用数学|非Lipschitz条件下由Lévy过程驱动的倒向随机微分方程解的存在唯一及其稳定性

非Lipschitz条件下由Lévy过程驱动的倒向随机微分方程解的存在唯一及其稳定性

任永 胡兰英 夏宁茂

应用数学2007,Vol.20Issue(2):307-315,9.
应用数学2007,Vol.20Issue(2):307-315,9.

非Lipschitz条件下由Lévy过程驱动的倒向随机微分方程解的存在唯一及其稳定性

Existence, Uniqueness and Stability of Solutions for BSDE Driven by Lévy Processes under Non-Lipschitz Condition

任永 1胡兰英 2夏宁茂1

作者信息

  • 1. 安徽师范大学数学系,安徽,芜湖,241000
  • 2. 华东理工大学数学系,上海,200237
  • 折叠

摘要

Abstract

We deal with backward stochastic differential equations (BSDEs in short) driven by independent Brownian motion. We derive the existence, uniqueness and stability of solutions for these equations under non-Lipschitz condition on the coefficients. And the existence of the solutions is obtained by a Picard-type iteration. The strong L2 convergence of solutions is derived under a weaker condition than the strong L2 convergence on the coefficients.

关键词

倒向随机微分方程/Lévy过程/Teugel鞅

Key words

Backward stochastic differential equation/Lévy process/Teugel's martingale

分类

数理科学

引用本文复制引用

任永,胡兰英,夏宁茂..非Lipschitz条件下由Lévy过程驱动的倒向随机微分方程解的存在唯一及其稳定性[J].应用数学,2007,20(2):307-315,9.

基金项目

Supported by the Key Science and Technology Project of Ministry of Education (207407), NSF of Anhui Educational Bureau (2006kj251B), the Special Project Grants of Anhui Normal University (2006xzx08) (207407)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文