| 注册
首页|期刊导航|东南大学学报(自然科学版)|一种基于可信度最优的数量关联规则挖掘算法

一种基于可信度最优的数量关联规则挖掘算法

吉根林 孙志挥

东南大学学报(自然科学版)2001,Vol.31Issue(2):31-34,4.
东南大学学报(自然科学版)2001,Vol.31Issue(2):31-34,4.

一种基于可信度最优的数量关联规则挖掘算法

An Algorithm for Mining Optimized Confidence Quantitative Association Rules

吉根林 1孙志挥2

作者信息

  • 1. 南京师范大学计算机科学系,南京210097
  • 2. 东南大学计算机科学与工程系,南京210096
  • 折叠

摘要

Abstract

This paper discusses the problem of discretization for continuousattributes and describes a method for discretization in the processing of mining quantitative association rules, including quantitative ranges partitioning and sampling to a huge database. An algorithm for mining optimized confidence quantitative association rules is presented. In the algorithm, the equi-depth partitioning is used to discrete for continuous attributes and a technique of handing convex hulls is used to compute optimized confidence quantitative association ranges. Given a huge database, we address the problem of finding association rules for numeric attributes, such as (A∈[v1,v2])C, in which C is boolean attribute. Our goal is to realize a system that finds an appropriate range automatically. We use the algorithms to analyse the buying and selling of stocks, finding association rules between stock price and fluctuation of price. The experiment states clearly that the algorithms are correct.

关键词

数量关联规则/数据挖掘/连续属性离散化

分类

信息技术与安全科学

引用本文复制引用

吉根林,孙志挥..一种基于可信度最优的数量关联规则挖掘算法[J].东南大学学报(自然科学版),2001,31(2):31-34,4.

基金项目

国家自然科学基金资助项目(79970092). (79970092)

东南大学学报(自然科学版)

OA北大核心CSCD

1001-0505

访问量0
|
下载量0
段落导航相关论文