应用泛函分析学报2000,Vol.2Issue(1):34-38,5.
自反代数的环自同构和环反自同构
Ring Automorphisms and Ring Antiautomorphisms of Reflexive Algebras
赵玉松 1孙晓琳2
作者信息
- 1. 烟台师范学院数学与计算机科学系,山东,烟台,264025
- 2. 烟台教育学院数学系,山东,烟台,264000
- 折叠
摘要
Abstract
Let A be a reflexive algebra in Banach space X such that O+≠O and X-≠X in LatA, then every ring automorphism φ (resp. ring antiautomorphism ψ) of A is of the form φ(A)=TAT-1 (resp. ψ(A)=TA*T-1), where T∶X→X (resp. T∶X*→X) is either a bounded linear bijective operator or a bounded conjugate linear bijective operator. In particular, both φ and ψ are continuous.关键词
自反代数/环自同构/环反自同构Key words
reflexive algebra/ring automorphism/ring antiautomorphism分类
数理科学引用本文复制引用
赵玉松,孙晓琳..自反代数的环自同构和环反自同构[J].应用泛函分析学报,2000,2(1):34-38,5.