| 注册
首页|期刊导航|自动化学报|采用精选Gabor小波和SVM分类的物体识别

采用精选Gabor小波和SVM分类的物体识别

沈琳琳 纪震

自动化学报2009,Vol.35Issue(4):350-355,6.
自动化学报2009,Vol.35Issue(4):350-355,6.DOI:10.3724/SP.J.1004.2009.00350

采用精选Gabor小波和SVM分类的物体识别

Gabor Wavelet Selection and SVM Classification for Object Recognition

沈琳琳 1纪震1

作者信息

  • 1. School of Computer and Software Engineering, Shenzhen Uni-versity, Shenzhen 518060, P. R. China
  • 折叠

摘要

Abstract

This paper proposes a Gabor wavelets and support vector machine (SVM)-based framework for object recognition. When discriminative features are extracted at optimized locations using selected Gabor wavelets, classifications are done via SVM. Compared to conventional Gabor feature based object recognition system, the system developed in this paper is both robust and efficient. The proposed framework has been successfully applied to two object recognition applications, i.e., object/non-object classification and face recognition. Experimental results clearly show advantages of the proposed method over other approaches.

关键词

Gabor feature/support vector machine (SVM)/object recognition

Key words

Gabor feature/support vector machine (SVM)/object recognition

分类

信息技术与安全科学

引用本文复制引用

沈琳琳,纪震..采用精选Gabor小波和SVM分类的物体识别[J].自动化学报,2009,35(4):350-355,6.

基金项目

Supported by National Natural Science Foundation of China(60572100, 60673122), Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (60711130233), ScienceFoundation of Shenzhen City (CXQ2008019, 200706), and Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (2008[890]) (60572100, 60673122)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文