| 注册
首页|期刊导航|计算机工程|基于流形学习和SVM的Web文档分类算法

基于流形学习和SVM的Web文档分类算法

王自强 钱旭

计算机工程2009,Vol.35Issue(15):38-40,3.
计算机工程2009,Vol.35Issue(15):38-40,3.

基于流形学习和SVM的Web文档分类算法

Web Document Classification Algorithm Based on Manifold Learning and SVM

王自强 1钱旭1

作者信息

  • 1. 中国矿业大学,北京,机电与信息工程学院,北京100083
  • 折叠

摘要

Abstract

To efficiently resolve Web document classification problem, a novel Web document classification algorithm based on manifold learning and Support Vector Machine(SVM) is proposed. The high dimensional Web document space in the training sets are non-linearly reduced to lower dimensional space with manifold learning algorithm LPP, and the hidden interesting lower dimensional structure can be discovered from the high dimensional observisional data. The classification and predication in the lower dimensional feature space are implemented with the multiplicative update-based optimal SVM. Experimental results show that the algorithm achieves higher classification accuracy with less running time.

关键词

文档分类/流形学习/支持向量机

Key words

document classification/ manifold learning/ Support Vector Machine(SVM)

分类

信息技术与安全科学

引用本文复制引用

王自强,钱旭..基于流形学习和SVM的Web文档分类算法[J].计算机工程,2009,35(15):38-40,3.

基金项目

教育部科学技术研究基金资助重点项目(107021) (107021)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文