| 注册
首页|期刊导航|计算机工程与应用|基于自适应神经网络的双摄像机标定

基于自适应神经网络的双摄像机标定

崔岸 袁智 王龙山

计算机工程与应用2009,Vol.45Issue(21):55-57,60,4.
计算机工程与应用2009,Vol.45Issue(21):55-57,60,4.DOI:10.3778/j.issn.1002-8331.2009.21.014

基于自适应神经网络的双摄像机标定

Self-adaptive neural network for binocular camera calibration

崔岸 1袁智 1王龙山2

作者信息

  • 1. 吉林大学,汽车工程学院,长春,130025
  • 2. 吉林大学,机械科学与工程学院,长春,130025
  • 折叠

摘要

Abstract

Camera calibration is an important step in computer vision,the traditional calibration methods need to acquire the in-trinsic and extrinsic parameters and the process is quite complicated,so self-adaptive neural network is used to learn the rela-tionship between the image coordinates and the space coordinates.The generalization ability is improved a lot by the following methods:modify Harris comer extraction algorithm to improve the training data accuracy,choose the number of the middle layer cells adaptively through program,and combine normalization and stopped training strategies.At last,comparing with the traditional calibration method,the test result shows that this method is available and has higher precision for binocular camera calibration.

关键词

双摄像机标定/自适应/多层前馈网络/Harris角点

Key words

binocular camera calibration/self-adaptive/Back Propagation(BP) network/harris comer

分类

计算机与自动化

引用本文复制引用

崔岸,袁智,王龙山..基于自适应神经网络的双摄像机标定[J].计算机工程与应用,2009,45(21):55-57,60,4.

基金项目

国家重点实验室基金资助项目(No.KLVBDM2005003) (No.KLVBDM2005003)

吉林省科技发展计划基金资助项目(No.20080539). (No.20080539)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文