应用数学2006,Vol.19Issue(4):835-841,7.
带势的非线性Klein-Gordon方程柯西问题的稳定和不稳定集
Stable and Unstable Sets for the Cauchy Problem for Nonlinear Klein-Gordon Equation with Potential
蒋毅 1成和平 2孟宪良 1蒲成林1
作者信息
- 1. 四川师范大学数学与软件科学学院,成都,610066
- 2. 成教电子机械高等专科学校,成都,610031
- 折叠
摘要
Abstract
For the Cauchy problem for the nonlinear Klein-Gordon equation with potential,we define new stable and unstable sets for the initial data.We prove that if during the evolution enters into the unstable set,the solution blows up in finite time.If during the evolution enters into the stable set,the solution is global.By using scaling argument,we also answer the question of how small the initial data are the global solution of the Cauchy problem exists.关键词
Klein-Gordon方程/稳定集/不稳定集/整体存在/爆破Key words
Klein-Gordon equation/Stable set/Unstable set/Global existence/Blowup分类
数理科学引用本文复制引用
蒋毅,成和平,孟宪良,蒲成林..带势的非线性Klein-Gordon方程柯西问题的稳定和不稳定集[J].应用数学,2006,19(4):835-841,7.