河南科技大学学报(自然科学版)2006,Vol.27Issue(3):86-89,4.
计算超立方体图电阻距离和Kirchhoff指标的新方法
A New Method for Computing Resistance Distances and Kirchhoff index of Hypercubes
摘要
Abstract
The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding electrical network constructed from G by replacing each edge of G by an unit resistor.The Kirchhoff indexis kf(G) is the sum of resistance distances between all pairs of vertices. In this work, a new approach to evaluate resistance distances of hypercubes is presented and closed-form formulae for computing resistance distances and Kirchhoff index are derived since hypercubes are distance-transitive.关键词
超立方体图/电阻距离/Kirchhoff指标/点传递/边传递/距离传递Key words
Hypercube/Resistance distance/Kirchhoff index/Vertex-transitive/Edge-transitive distance-transitive分类
数理科学引用本文复制引用
马军生,杨玉军,杨德五..计算超立方体图电阻距离和Kirchhoff指标的新方法[J].河南科技大学学报(自然科学版),2006,27(3):86-89,4.基金项目
Supported by National Natural Science Foundation of China(10071034). (10071034)