首页|期刊导航|中国电机工程学报|基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断

基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断OA北大核心CSCDCSTPCD

Vibration Fault Diagnosis of Hydroelectric Unit Based on LS-SVM and Information Fusion Technology

中文摘要英文摘要

应用最小二乘支持向量机和信息融合技术对水电机组的振动故障进行诊断.采用以水电机组振动信号的频域特征和时域振幅特征作为特征向量的学习样本,通过训练,使最小二乘支持向量机能够反映特征向量和故障类型的映射关系,在完成局部诊断后再实现决策信息融合,从而达到故障诊断的目的.以水电机组振动故障诊断为例,进行了应用检验.研究结果表明,与常规方法相比,最小二乘支持向量机和信息融合技术相结合的方法具有快速有效等优点,适合水电机组振动故障的诊断.

Vibration fault diagnosis of hydroelectric unit was investigated using method of least square support vector machine (LS-SVM) and Dempster-Shafer theory (D-S Theory).Spectrum and amplitude characteristic was acted as eigenvector of learning samples to train the constructed LS-SVM regression and classifier for realizing mapping relationship between the fault and the characteristic. Information fusion was realized after completing local diagnosis, and th…查看全部>>

彭文季;罗兴锜;郭鹏程;逯鹏

西安理工大学水利水电学院,陕西省,西安市,710048西安理工大学水利水电学院,陕西省,西安市,710048西安理工大学水利水电学院,陕西省,西安市,710048西安理工大学水利水电学院,陕西省,西安市,710048

能源科技

水电机组振动故障诊断支持向量机信息融合

hydroelectric unitvibrationfault diagnosissupport vector machineinformation fusion

《中国电机工程学报》 2007 (23)

巨型混流式水轮机组水力振动与稳定性研究

86-92,7

国家自然科学基金项目(90410019).Supported by the National Natural Science Foundation of China (90410019).

评论

您当前未登录!去登录点击加载更多...