| 注册
首页|期刊导航|控制理论与应用|随机优化问题基于假设检验的遗传算法

随机优化问题基于假设检验的遗传算法

张亮 王凌 郑大钟

控制理论与应用2004,Vol.21Issue(6):885-889,5.
控制理论与应用2004,Vol.21Issue(6):885-889,5.

随机优化问题基于假设检验的遗传算法

Hypothesis-test based genetic algorithm for stochastic optimization problems

张亮 1王凌 1郑大钟1

作者信息

  • 1. 清华大学,自动化系,北京,100084
  • 折叠

摘要

Abstract

To effectively solve the stochastic optimization problems with non-deterministic and multi-modal properties, a class of hypothesis-test based genetic algorithm is proposed. The algorithm performs reasonable estimation by multiple evaluations, searches the design space effectively via genetic operators, and enhances the searching ability and population diversity by hypothesis test to overcome premature convergence. Based on typical stochastic functional and combinatorial optimization problems, the effects of hypothesis test, performance estimation number and magnitude of noise on the performance of the approach are studied, and the effectiveness and robustness of the proposed approach are demonstrated.

关键词

遗传算法/随机优化/假设检验

Key words

genetic algorithm(GA)/stochastic optimization/hypothesis test

分类

信息技术与安全科学

引用本文复制引用

张亮,王凌,郑大钟..随机优化问题基于假设检验的遗传算法[J].控制理论与应用,2004,21(6):885-889,5.

基金项目

Supported by the National Natual Science Foundation of China (60204008,60374060) (60204008,60374060)

973 Program(2002CB312200). (2002CB312200)

控制理论与应用

OA北大核心CSCDCSTPCD

1000-8152

访问量0
|
下载量0
段落导航相关论文