| 注册
首页|期刊导航|计算机工程与应用|改进的模糊C均值聚类算法

改进的模糊C均值聚类算法

刘坤朋 罗可

计算机工程与应用2009,Vol.45Issue(21):97-98,188,3.
计算机工程与应用2009,Vol.45Issue(21):97-98,188,3.DOI:10.3778/j.issn.1002-8331.2009.21.028

改进的模糊C均值聚类算法

Improved fuzzy C-means clustering algorithm

刘坤朋 1罗可1

作者信息

  • 1. 长沙理工大学,计算机通信与工程学院,长沙,410076
  • 折叠

摘要

Abstract

Serf-adaptive strategy with the traditional fuzzy C-means clustering algorithm forms a new fuzzy clustering algorithm. Without prejudice to the speed of convergence,it can resolve the problems of local optimal and sensitivity to initial values.With the two data sets in the database of UCI machine learning for the study,the experimental results indicate that it does not lose the precision to the adaptive immune clustering algorithm.The number of clusters is accurate and its faster convergence is more important in the nowadays of high-spoed network data changing.

关键词

模糊C均值聚类/自适应/簇的调整

Key words

fuzzy C-means clustering/self-adaptive/chster adjustment

分类

信息技术与安全科学

引用本文复制引用

刘坤朋,罗可..改进的模糊C均值聚类算法[J].计算机工程与应用,2009,45(21):97-98,188,3.

基金项目

国家自然科学基金(the National Natural Science Foundation of China under Grant No.60474070,No.10471036) (the National Natural Science Foundation of China under Grant No.60474070,No.10471036)

湖南省科技计划项目(No.05FJ3074) (No.05FJ3074)

湖南省教育厅重点项目(No.07A001). (No.07A001)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文