| 注册
首页|期刊导航|噪声与振动控制|基于Volterra级数和KPCA的旋转机械故障诊断方法研究

基于Volterra级数和KPCA的旋转机械故障诊断方法研究

蒋静 李志农 易小兵

噪声与振动控制2011,Vol.31Issue(1):119-122,4.
噪声与振动控制2011,Vol.31Issue(1):119-122,4.DOI:10.3969/j.issn.1006-1355-2011.01.025

基于Volterra级数和KPCA的旋转机械故障诊断方法研究

Fault Diagnosis Method of Rotating Machinery Based on Volterra Series and KPCA

蒋静 1李志农 2易小兵1

作者信息

  • 1. 南昌航空大学,无损检测技术教育部重点实验室,南昌,330063
  • 2. 郑州大学,机械工程学院,郑州,450001
  • 折叠

摘要

Abstract

A new fault diagnosis method based on Volterra series and KPCA is proposed. In this method, firstly the Volterra series of four states, i.e. normal, rotor crack, rotor anb and pedestal looseness, are identified by particle swarm optimization (QPSO) algorithm. Then the Volterra series is used as characteristic vectors to input into the kernel principal component analysis (KPCA) for training and recognition. The experiment result shows that the proposed method is very effective. The higher order Volterra kernels such as the second-order, the third-order kernels can be used for the recognition when the faults can not be distinguished readily with the use of the first-order Volterra kernel only.

关键词

振动与波/Volterra级数/量子粒子群(QPSO)/核函数主元分析(KPCA)/故障诊断

分类

信息技术与安全科学

引用本文复制引用

蒋静,李志农,易小兵..基于Volterra级数和KPCA的旋转机械故障诊断方法研究[J].噪声与振动控制,2011,31(1):119-122,4.

基金项目

国家自然科学基金(50775208,51075372),河南省教育厅自然科学基金(2006460005,2008C460003),湖南省机械设备健康维护重点实验室开放基金(200904) (50775208,51075372)

噪声与振动控制

OACSCDCSTPCD

1006-1355

访问量1
|
下载量0
段落导航相关论文