| 注册
首页|期刊导航|计算机工程与科学|基于向量内积的非频繁项挖掘算法研究

基于向量内积的非频繁项挖掘算法研究

刘彩虹 刘强 李爱平

计算机工程与科学2011,Vol.33Issue(2):92-96,5.
计算机工程与科学2011,Vol.33Issue(2):92-96,5.DOI:10.3969/j.issn.1007-130X.2011.02.018

基于向量内积的非频繁项挖掘算法研究

Study on Infrequent Itemsets Mining Algorithms Based on Vector Inner Product

刘彩虹 1刘强 2李爱平3

作者信息

  • 1. 大连外国语学院现代教育技术中心,辽宁,大连,116044
  • 2. 海军91423部队,辽宁,大连,116043
  • 3. 国防科学技术大学计算机学院,湖南,长沙,410073
  • 折叠

摘要

Abstract

Aiming at how to produce infrequent itemsets in the negative association rules, this paper introduces vector inner product to this field.By converting the transaction database to the Boolean Vector Matrix,and by allotting a equitable data storage structure, we put forward a new algorithm to produce infrequent itemsets effectively.First of all, we convert a database to a Boolean Vector Matrix; and then calculate the inner vector in the matrix, and finally produce infrequent itemsets and frequent itemsets with the restriction of the 2LS model according to the idea of incremental change layer after layer , which makes sure that infrequent itemsets not only can be produced by the joint of frequent itemsets , but also can be produced by the joint between infrequent itemsets and frequent itemsets, and between infrequent itemsets and infrequent itemsets.The experimental results show that this method not only scans the database only once, and also has the virtues such as dynamic pruning, without saving mid items, saving lots of memories, and without losing infrequent itemsets, which has an important neaning to the negative association rule mining and all kinds of itemsets with the characteristics of low frequent appearance, strong correlation in databases.

关键词

数据挖掘/负关联规则/频繁项集/非频繁项集

Key words

data mining/ negative association rules/ frequent itemsets/ infrequent itemsets

分类

信息技术与安全科学

引用本文复制引用

刘彩虹,刘强,李爱平..基于向量内积的非频繁项挖掘算法研究[J].计算机工程与科学,2011,33(2):92-96,5.

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文