| 注册
首页|期刊导航|空军工程大学学报(自然科学版)|无监督多尺度模糊聚类算法研究

无监督多尺度模糊聚类算法研究

魏娜 王建勋 兰文祥

空军工程大学学报(自然科学版)2011,Vol.12Issue(1):78-82,5.
空军工程大学学报(自然科学版)2011,Vol.12Issue(1):78-82,5.DOI:10.3969/j.issn.1009-3516.2011.01.017

无监督多尺度模糊聚类算法研究

Research on Unsupervised Multi -scale Fuzzy Clustering Algorithm (UMFA)

魏娜 1王建勋 1兰文祥1

作者信息

  • 1. 空军工程大学,陕西,西安,710051
  • 折叠

摘要

Abstract

In allusion to the insufficiencies in fuzzy c - means clustering algorithm, this paper advances a new mean shift clustering algorithm. This algorithm called unsupervised multi - scale fuzzy clustering algorithm (UMFA).This algorithm is not influenced by the initializations of the cluster centers, through which the hard clustering partition can be obtained by the use of fuzzy clustering without assuming the data unit and the data center of clustering.By using this algorithm the clustering structure of data can be indicated from different " partition scales"; and the unsupervised clustering for the given data set can be executed. In order to meet the needs of dealing with the large data sets, this paper proposes a fast unsupervised multi -scale fuzzy clustering algorithm (FUMFA). The experiments prove that UMFA behaves itseff all right on multitudinous data sets, and possesses a best collectivity clustering capability, and the use of it can succeed in indicating the clustering structure of data. Simultaneously the experiments also prove that FUMFA possesses a faster speed and an exact identifiable precision, and is applicable to the large data sets. The experimental results of the two algorithms are satisfactory.

关键词

均值漂移/模糊聚类/无监督多尺度聚类

Key words

MS/ fuzzy clustering/ unsupervised multi - scale fuzzy clustering

分类

信息技术与安全科学

引用本文复制引用

魏娜,王建勋,兰文祥..无监督多尺度模糊聚类算法研究[J].空军工程大学学报(自然科学版),2011,12(1):78-82,5.

基金项目

国防科技重点实验室基金资助项目(9140c610301080c6106) (9140c610301080c6106)

空军工程大学学报(自然科学版)

OA北大核心CSCDCSTPCD

2097-1915

访问量0
|
下载量0
段落导航相关论文