| 注册
首页|期刊导航|国防科技大学学报|一种基于多Agent强化学习的多星协同任务规划算法

一种基于多Agent强化学习的多星协同任务规划算法

王冲 景宁 李军 王钧 陈浩

国防科技大学学报2011,Vol.33Issue(1):53-58,6.
国防科技大学学报2011,Vol.33Issue(1):53-58,6.

一种基于多Agent强化学习的多星协同任务规划算法

An Algorithm of Cooperative Multiple Satellites Mission Planning Based on Multi-agent Reinforcement Learning

王冲 1景宁 1李军 1王钧 1陈浩1

作者信息

  • 1. 国防科技大学,电子科学与工程学院,湖南,长沙,410073
  • 折叠

摘要

Abstract

A multi-satellite cooperative planning problem model was given considering the characteristics of the task requests and satellite constraints. Then the original performance function of each satellite agent was modified by introducing both the constraint punishing operator and the multi-satellite joint punishing operator. Next, a multi-satellite reinforcement learning algorithm (MUSARLA)was proposed to derive the coordinated task allocation strategy. Furethermore, the interaction among multiple satellites was designed based on blackboard architecture to reduce the communication cost while learning. Fimally, simulated experiments are carried out which verified the effectiveness of the proposed algorithm.

关键词

卫星任务规划/协同规划/多智能体强化学习/黑板结构

Key words

satellite mission planning/cooperative planning/multi-agent reinforcement learning/blackboard architecture

分类

信息技术与安全科学

引用本文复制引用

王冲,景宁,李军,王钧,陈浩..一种基于多Agent强化学习的多星协同任务规划算法[J].国防科技大学学报,2011,33(1):53-58,6.

基金项目

国家自然科学基金资助项目(60604035) (60604035)

国家863高技术资助项目(2007AA12020203) (2007AA12020203)

国防科技大学学报

OA北大核心CSCDCSTPCD

1001-2486

访问量0
|
下载量0
段落导航相关论文