四川师范大学学报(自然科学版)2011,Vol.34Issue(2):193-196,4.DOI:10.3969/j.issn.1001-8395.2011.02.011
Schr(o)dinger方程各向异性有限元超收敛分析
Superconvergence Analysis of Anisotropic Finite Element for Schr(o)dinger Equation
摘要
Abstract
In this paper, bilinear finite element approximation to Schr(o)dinger equation on anisotropic meshes under semidiscrete scheme is discussed.Firstly, without the shape regularity assumption and inverse assumption on the meshes, the same superclose properties as the traditional methods are derived through the special properties of the element.Furthermore, based on the interpolated postprocessing technique, a suitable interpolation operator is constructed, then the global superconvergence is obtained.关键词
Schr(o)dinger方程/双线性元/各向异性网格/超逼近及超收敛/后处理技术Key words
Schr(o)dinger equation/ bilinear finite element/ anisotropic meshes/ supercloseness and superconvergence/ postprocessing technique分类
数理科学引用本文复制引用
任金城..Schr(o)dinger方程各向异性有限元超收敛分析[J].四川师范大学学报(自然科学版),2011,34(2):193-196,4.基金项目
国家自然科学基金(10590353)资助项目 (10590353)