| 注册
首页|期刊导航|武汉工程大学学报|基于混合特征提取和WNN的齿轮箱故障诊断

基于混合特征提取和WNN的齿轮箱故障诊断

鲁艳军 陈汉新 贺文杰 尚云飞 陈绪兵

武汉工程大学学报2011,Vol.33Issue(5):82-88,7.
武汉工程大学学报2011,Vol.33Issue(5):82-88,7.DOI:10.3969/j.issn.1674-2869.2011.05.022

基于混合特征提取和WNN的齿轮箱故障诊断

Gearbox fault diagnosis based on hybrid feature extraction and wavelet neural network

鲁艳军 1陈汉新 1贺文杰 1尚云飞 2陈绪兵1

作者信息

  • 1. 武汉工程大学机电工程学院,湖北武汉430205
  • 2. 法国国立梅斯工程师学院,梅斯57078
  • 折叠

摘要

Abstract

A new method of fault diagnosis for gearbox based on hybrid feature extraction and wavelet neural network (WNN) was proposed in this paper.The time domain analysis, wavelet packet decomposition and wavelet decomposition were applied to extract the fault feature information of vibration signals collected from gearbox.The extracted feature values were regarded as the feature input vector of WNN.The scale parameters, translation parameters, weight values and threshold values in WNN structure were optimized by traditional back- propagation (BP) algorithm.Three gear fault modes were simulated with different crack sizes in the experiment.The effectiveness and reliability of the presented fault diagnosis method were demonstrated through identification and classification for several fault modes.

关键词

齿轮箱/特征提取/小波神经网络/故障诊断

Key words

gearbox/ feature extraction/ wavelet neural network/ fault diagnosis

分类

机械制造

引用本文复制引用

鲁艳军,陈汉新,贺文杰,尚云飞,陈绪兵..基于混合特征提取和WNN的齿轮箱故障诊断[J].武汉工程大学学报,2011,33(5):82-88,7.

基金项目

湖北省教育厅科学技术研究重大项目(Z20101501) (Z20101501)

武汉市科技局科技攻关项目(201010621237) (201010621237)

武汉工程大学学报

1674-2869

访问量0
|
下载量0
段落导航相关论文