| 注册
首页|期刊导航|计算机工程与应用|新型的动态粒子群优化算法

新型的动态粒子群优化算法

王润芳 张耀军 裴志松

计算机工程与应用2011,Vol.47Issue(16):32-34,3.
计算机工程与应用2011,Vol.47Issue(16):32-34,3.DOI:10.3778/j.issn.1002-8331.2011.16.010

新型的动态粒子群优化算法

Novel particle swarm optimization algorithm

王润芳 1张耀军 2裴志松1

作者信息

  • 1. 长春工业大学人文信息学院,长春,130122
  • 2. 信阳农业高等专科学校计算机系,河南,信阳,464000
  • 折叠

摘要

Abstract

To solve the problem that adaptive particle swarm algorithm with dynamically changing inertia weigh algorithm is apt to trap in local optimum,a dynamic particle swarm optimization algorithm with adaptive mutation is proposed.The adaptive learning factor and adaptive mutation strategy are introduced in this new algorithm, so that proposed algorithm can easily jump out of local optimum with effective dynamic adaptability.The test experiments with three well-known benchmark functions show that the convergence speed of proposed algorithm is significantly superior to existing algorithms,and the convergence accuracy of algorithm is also increased.

关键词

粒子群优化算法/惯性权重/自适应变异/学习因子

Key words

particle swarm optimization algorithm/ inertia weight/ adaptive mutation/ learning factor

分类

信息技术与安全科学

引用本文复制引用

王润芳,张耀军,裴志松..新型的动态粒子群优化算法[J].计算机工程与应用,2011,47(16):32-34,3.

基金项目

国家自然科学基金(the National Natural Science Foundation of China under Grant No.70701016). (the National Natural Science Foundation of China under Grant No.70701016)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文