| 注册
首页|期刊导航|自动化学报|具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用

具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用

ALFI Alireza

自动化学报2011,Vol.37Issue(5):541-549,9.
自动化学报2011,Vol.37Issue(5):541-549,9.DOI:10.3724/SP.J.1004.2011.00541

具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用

PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems

ALFI Alireza1

作者信息

  • 折叠

摘要

Abstract

An important problem in engineering is the unknown parameters estimation in nonlinear systems. In this paper, a novel adaptive particle swarm optimization (APSO) method is proposed to solve this problem. This work considers two new aspects, namely an adaptive mutation mechanism and a dynamic inertia weight into the conventional particle swarm optimization (PSO) method.These mechanisms are employed to enhance global search ability and to increase accuracy. First, three well-known benchmark functions namely Griewank, Rosenbrock and Rastrigrin are utilized to test the ability of a search algorithm for identifying the global optimum. The performance of the proposed APSO is compared with advanced algorithms such as a nonlinearly decreasing weight PSO (NDWPSO) and a real-coded genetic algorithm (CA), in terms of parameter accuracy and convergence speed. It is confirmed that the proposed APSO is more successful than other aforementioned algorithms. Finally, the feasibility of this algorithm is demonstrated through estimating the parameters of two kinds of highly nonlinear systems as the case studies.

关键词

Particle swarm optimization (PSO)/parameter estimation/nonlinear dynamics/inertia weight/adaptive mutation

Key words

Particle swarm optimization (PSO)/parameter estimation/nonlinear dynamics/inertia weight/adaptive mutation

引用本文复制引用

ALFI Alireza..具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用[J].自动化学报,2011,37(5):541-549,9.

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文