| 注册
首页|期刊导航|北京交通大学学报|基于多特征描述的指横纹识别

基于多特征描述的指横纹识别

张延强 孙冬梅 裘正定

北京交通大学学报2011,Vol.35Issue(2):8-13,6.
北京交通大学学报2011,Vol.35Issue(2):8-13,6.

基于多特征描述的指横纹识别

Knuckleprint authentication using multiple representations

张延强 1孙冬梅 1裘正定1

作者信息

  • 1. 北京交通大学,计算机与信息技术学院,北京,100044
  • 折叠

摘要

Abstract

A novel knuckleprint authentication method is proposed by using multiple representations.Principle component analysis (PCA) features, 2D Gabor phase features and magnitude features are extracted for knuckleprint authentication. Fisher criterion based linear discrimination analysis (LDA) is used for match-score fusion, which can further improve the system performance. Experiments based on the database that contains 1 971 image samples from 98 individuals demonstrate that the high recognition accuracy and efficient performance can be achieved with the proposed algorithm. The recognition rate is 99.39%, and the half total error rate (HTER) is no more than 0.56% and one match time consumption reaches 0.67 ms.

关键词

指横纹/主成分分析/2D Gabor滤波/匹配分数融合

Key words

knuckleprint/ principle component analysis/ 2D Gabor filter/ score-level fusion

分类

信息技术与安全科学

引用本文复制引用

张延强,孙冬梅,裘正定..基于多特征描述的指横纹识别[J].北京交通大学学报,2011,35(2):8-13,6.

基金项目

国家自然科学基金资助项目(60773015) (60773015)

北京市自然科学基金资助项目(4102051) (4102051)

中央高校基本科研业务费专项资金资助(2009JBZ006) (2009JBZ006)

北京交通大学学报

OA北大核心CSCDCSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文