| 注册
首页|期刊导航|计算机应用研究|一种新的基于蚁群优化的模糊强化学习算法

一种新的基于蚁群优化的模糊强化学习算法

谢光强 陈学松

计算机应用研究2011,Vol.28Issue(4):1266-1268,1271,4.
计算机应用研究2011,Vol.28Issue(4):1266-1268,1271,4.DOI:10.3969/j.issn.1001-3695.2011.04.018

一种新的基于蚁群优化的模糊强化学习算法

Novel fuzzy reinforcement learning incorporated with ant colony optimization

谢光强 1陈学松2

作者信息

  • 1. 广东工业大学自动化学院,广州,510006
  • 2. 广东工业大学计算机学院,广州,510006
  • 折叠

摘要

Abstract

Fuzzy Sarsa learning (FSL) is one of fuzzy reinforcement learning algorithms based on Sarsa architecture.FSL approximates the action value function and is an on-policy method.In each fuzzy rules, actions are selected according to the proposed modified Softmax formula.Because it was difficult for FSL to balance exploration vs.exploitation, offered an ant colony optimization FSL(ACO-FSL) by integrating the proposed ant colony optimization and the fuzzy balancer into FSL, and proved the weight vector of ACO-FSL with stationary action selection policy converged to a unique value.Simulation results show that ACO-FSL well manages balance, and outperforms FSL in terms of learning speed and action quality.

关键词

强化学习/模糊Sarsa学习/蚁群优化

Key words

reinforcement learning/ fuzzy Sarsa learning/ ant colony optimization

分类

信息技术与安全科学

引用本文复制引用

谢光强,陈学松..一种新的基于蚁群优化的模糊强化学习算法[J].计算机应用研究,2011,28(4):1266-1268,1271,4.

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文