| 注册
首页|期刊导航|中国组织工程研究与临床康复|点对称距离模糊C均值聚类算法在脑部MRI图像分割中的应用

点对称距离模糊C均值聚类算法在脑部MRI图像分割中的应用

邓羽 黄华

中国组织工程研究与临床康复2011,Vol.15Issue(22):4084-4086,3.
中国组织工程研究与临床康复2011,Vol.15Issue(22):4084-4086,3.DOI:10.3969/j.issn.1673-8225.2011.22.022

点对称距离模糊C均值聚类算法在脑部MRI图像分割中的应用

MRI brain image segmentation based on point symmetry distance - fuzzy C means algorithm

邓羽 1黄华1

作者信息

  • 1. 四川大学电气信息学院,四川省成都市,610065
  • 折叠

摘要

Abstract

BACKGROUND: Image segmentation is a significant step of image processing and analysis. Within the traditional segmentation methods, fuzzy C means clustering (FCM) is applied widely. OBJECTIVE: To introduce point symmetry distance (PS)-FCM (PS-FCM) algorithm into the MRI brain image segmentation so as to promote the accu racy of MRI image segmentation.METHODS: In connection with the traditional FCM algorithm based on Minkowski distance, this pepper introduces PS-FCM algorithm into the MRI brain image segmentation.RESULTS AND CONCLUSION: Experimental results show that PS-FCM has obvious advantages compared with traditional FCMalgorithm.

关键词

模糊C均值聚类/MRI图像/点对称距离/点对称距离的模糊C均值聚类算法/数字化医学

分类

医药卫生

引用本文复制引用

邓羽,黄华..点对称距离模糊C均值聚类算法在脑部MRI图像分割中的应用[J].中国组织工程研究与临床康复,2011,15(22):4084-4086,3.

中国组织工程研究与临床康复

OACSCDCSTPCD

2095-4344

访问量0
|
下载量0
段落导航相关论文