| 注册
首页|期刊导航|计算机工程与应用|动态滑动窗口的数据流聚类方法

动态滑动窗口的数据流聚类方法

张忠平 王浩 薛伟 夏炎

计算机工程与应用2011,Vol.47Issue(7):135-138,4.
计算机工程与应用2011,Vol.47Issue(7):135-138,4.DOI:10.3778/j.issn.1002-8331.2011.07.039

动态滑动窗口的数据流聚类方法

Approach for data streams clustering over dynamic sliding windows.

张忠平 1王浩 1薛伟 1夏炎1

作者信息

  • 1. 燕山大学信息科学与工程学院,河北,秦皇岛,066004
  • 折叠

摘要

Abstract

The clustering of data streams is an important problem for clustering analysis.In order to address the data streams with varying speed, an efficient data streams clustering algorithm over dynamic sliding windows is proposed, which based on the two-phased framework. In the online component,the novel micro-cluster feature is introduced to store the important statistical information of data streams. Through computing the distances from data points to the center of each micro-cluster,and adjusting the sizes of sliding windows,the corresponding clustering features are maintained dynamically. In the offiine component,by employing the mean values of the micro-clusters in online component,k-means algorithm is adopted to generate the final clustering results. Experimental results show that this approach has higher clustering purity and better scalability.

关键词

数据挖掘/数据流/聚类/滑动窗口

Key words

data mining/data streams/clustering/sliding windows

分类

信息技术与安全科学

引用本文复制引用

张忠平,王浩,薛伟,夏炎..动态滑动窗口的数据流聚类方法[J].计算机工程与应用,2011,47(7):135-138,4.

基金项目

国家自然科学基金(the National Natural Science Foundation of China under Grant No.60773100) (the National Natural Science Foundation of China under Grant No.60773100)

河北省教育厅科研计划项目(the Scientific Research Project of the Department of Hebei Education of China under Grant No.2006143). (the Scientific Research Project of the Department of Hebei Education of China under Grant No.2006143)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文