| 注册
首页|期刊导航|哈尔滨工程大学学报|多模态函数优化的拥挤差分进化算法

多模态函数优化的拥挤差分进化算法

毕晓君 王义新

哈尔滨工程大学学报2011,Vol.32Issue(2):223-227,5.
哈尔滨工程大学学报2011,Vol.32Issue(2):223-227,5.DOI:10.3969/j.issn.1006-7043.2011.02.015

多模态函数优化的拥挤差分进化算法

Multimodal function optimization using a crowding differential evolution

毕晓君 1王义新1

作者信息

  • 1. 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨,150001
  • 折叠

摘要

Abstract

This paper presents a crowding differential evolution(CDE) algorithm applied to multimodal function optimization for finding all the extreme solutions, using DEs( differential evolution, DE) global search strategy and internal parallel pattern. The high crowding factor(CF) value search avoids the replacement error, maintains diversity of species, and can accurately locate all the multimodal functions optimal solutions and extreme solutions. Meanwhile, this algorithm has a lot of advantages such as less parameters, simple operator and swift convergence rate.The algorithm is compared with crowding genetic algorithm and simulation experiment results show that crowding differential evolution is better than crowding genetic algorithm (CGA) in both convergence rate and convergence accuracy.

关键词

多模态函数优化/拥挤模型/差分进化算法/群集因子

Key words

multimodal function optimization/ crowding model/ differential evolution/ crowding factor

分类

信息技术与安全科学

引用本文复制引用

毕晓君,王义新..多模态函数优化的拥挤差分进化算法[J].哈尔滨工程大学学报,2011,32(2):223-227,5.

哈尔滨工程大学学报

OA北大核心CSCDCSTPCD

1006-7043

访问量0
|
下载量0
段落导航相关论文