| 注册
首页|期刊导航|高技术通讯|基于矢量量化的强化学习及其在机器人行为学习中的应用

基于矢量量化的强化学习及其在机器人行为学习中的应用

段勇 伊婧 张永赫 徐心和

高技术通讯2011,Vol.21Issue(2):179-184,6.
高技术通讯2011,Vol.21Issue(2):179-184,6.DOI:10.3772/j.issn.1002-0470.2011.02.012

基于矢量量化的强化学习及其在机器人行为学习中的应用

Reinforcement learning based on vector quantization and its application in robot behavior learning

段勇 1伊婧 1张永赫 1徐心和2

作者信息

  • 1. 沈阳工业大学信息科学与工程学院,沈阳,110870
  • 2. 东北大学信息科学与工程学院,沈阳,110819
  • 折叠

摘要

Abstract

Considering that in the course of reinforcement learning (RL), the too large state space causes the problems of long time leaming and difficulty in the learning algorithm's convergence, the paper proposes the VQRL method, a LookupTable reinforcement learning method based on vector quantization (VQ). The proposed method utilizes the codebook of vector quantization to approximate the continuous state space of reinforcement leaming, which solves the partition state space problem of RL and improves the speed of convergence effectively. And based on the equal distortion theory, it uses a distortion sensitive self-organizing feature map (SOFM) to quantize vectors. Therefore, the favorable generalization performance of state space can be obtained. The proposed method was used for learning the behavior of a reactive robot. The experiments showed the effectiveness of the presented algorithm. It can effectively solve the navigation problems under complicated unknown environments.

关键词

强化学习(RL)/矢量量化(VQ)/码书/Q(λ)学习/自组织特征映射

Key words

reinforcement leaming (RL)/ vector quantization (VQ)/ codebook/ Q(λ) learning/ self-organizing feature maps

引用本文复制引用

段勇,伊婧,张永赫,徐心和..基于矢量量化的强化学习及其在机器人行为学习中的应用[J].高技术通讯,2011,21(2):179-184,6.

基金项目

国家青年科学基金(60905054)资助项目. (60905054)

高技术通讯

OA北大核心CSCDCSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文