| 注册
首页|期刊导航|计算机工程与应用|峭度自然梯度盲分离改进算法

峭度自然梯度盲分离改进算法

王灵伟 舒勤 陈飞龙

计算机工程与应用2011,Vol.47Issue(11):132-134,214,4.
计算机工程与应用2011,Vol.47Issue(11):132-134,214,4.DOI:10.3778/j.issn.1002-8331.2011.11.037

峭度自然梯度盲分离改进算法

Improved algorithm of natural gradient blind souree separation with kurtosis.

王灵伟 1舒勤 1陈飞龙1

作者信息

  • 1. 四川大学电气信息学院,成都,610065
  • 折叠

摘要

Abstract

Because of quick convergence rate and good separation performance, natural gradient algorithm occupies importance position in blind source separation. Natural gradient algorithm adopts fix-step, so they cannot resolve the contradiction between convergence speed and the error in the steady state. By building a nonlinear function relationship between the step size factor and the square sum of the kurtosis,the paper proposes an adaptive natural gradient algorithm. Computer simulation result confirms the algorithm's validity,and shows that the algorithm's performance is superior to natural gradient algorithm.

关键词

盲信号分离/自适应/学习率/峭度

Key words

blind source separation/adaptive/learning rate/kurtosis

分类

信息技术与安全科学

引用本文复制引用

王灵伟,舒勤,陈飞龙..峭度自然梯度盲分离改进算法[J].计算机工程与应用,2011,47(11):132-134,214,4.

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文