华东师范大学学报(自然科学版)Issue(3):73-84,99,13.DOI:10.3969/j.issn.1000-5641.2011.03.011
给定独立数的双圈图的最大拟拉普拉斯谱半径
Maximal signless Laplacian spectral radius of bicyclic graphs with given independence number
摘要
Abstract
Let (B)(n, α) be the class of bicyclic graphs on n vertices with independence number α. Let (B)1 (n, α) be the subclass of (B)n, α) consisting of all bicyclic graphs with two edge-disjoint cycles and (B)2(n, α) = (B)(n, α)\(B) (n, α). This paper determined the unique graph with the maximal signless Laplacian spectral radius among all graphs in (B)(n, α)and (B)2(n, α), respectively. Furthermore, the upper bound of the signless Laplacian spectral radius and the extremal graph for (B)(n, α) were also obtained.关键词
拟拉普拉斯谱半径/双圈图/独立数Key words
signlees Laplacian spectral radius/ bicyclic graph/ independence number分类
数理科学引用本文复制引用
李瑞林,施劲松,董炳灿..给定独立数的双圈图的最大拟拉普拉斯谱半径[J].华东师范大学学报(自然科学版),2011,(3):73-84,99,13.基金项目
国家自然科学基金(10771069) (10771069)