| 注册
首页|期刊导航|电力系统自动化|基于脊波神经网络的短期风电功率预测

基于脊波神经网络的短期风电功率预测

茆美琴 周松林 苏建徽

电力系统自动化2011,Vol.35Issue(7):70-74,5.
电力系统自动化2011,Vol.35Issue(7):70-74,5.

基于脊波神经网络的短期风电功率预测

Short-term Wind Power Forecast Based on Ridgelet Neural Network

茆美琴 1周松林 1苏建徽1

作者信息

  • 1. 合肥工业大学教育部光伏系统工程研究中心,安徽省,合肥市,230009
  • 折叠

摘要

Abstract

Fairly accurate forecast of wind power is an effective means for improving power system security and economy. Based on an analysis of the principle of the ridgelet neural network, the network is applied to the forecast of wind speed, wind direction and wind power. Two forecast models are developed to predict wind speed and wind direction, respectively, and the nonlinear neural network is applied to the approximation of an actual power curve. Finally, the wind power is calculated according to the forecasted wind speed, wind direction and the power fitting curve. Simulation results show that, compared with the wavelet neural network, BP neural network and RBF neural network, the ridgelet neural network is found to yield a higher accuracy of wind power forecast than all the other three.

关键词

风电功率预测/脊波神经网络/非点状奇异性/功率曲线/泛化性能

Key words

wind power forecast/ridgelet neural network/non-point-like singularity/power curve/generalization performance

引用本文复制引用

茆美琴,周松林,苏建徽..基于脊波神经网络的短期风电功率预测[J].电力系统自动化,2011,35(7):70-74,5.

基金项目

国家重点基础研究发展计划(973计划)资助项目(2009013219708). (973计划)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文