| 注册
首页|期刊导航|郑州大学学报(理学版)|高斯隶属度函数模糊神经网络在肺癌诊断中的应用

高斯隶属度函数模糊神经网络在肺癌诊断中的应用

徐力平 张华杰 吴逸明

郑州大学学报(理学版)2011,Vol.43Issue(1):95-98,4.
郑州大学学报(理学版)2011,Vol.43Issue(1):95-98,4.

高斯隶属度函数模糊神经网络在肺癌诊断中的应用

The Application of Fuzzy Neural Network with Gaussian Membership Function to Lung Cancer Diagnosis

徐力平 1张华杰 1吴逸明2

作者信息

  • 1. 郑州大学,信息工程学院,河南郑州,450001
  • 2. 郑州大学,公共卫生学院,河南郑州,450001
  • 折叠

摘要

Abstract

The usefulness of a fuzzy neural network (FNN) with Gaussian membership function (GMF) for distinguishing between lung cancer and benign cases was studied to improve lung cancer diagnosis. Thirteen non-binary parameters were fuzzed using GMF. The fuzzed outputs added with the other 13 binary parameters served as inputs of the BP neural network. Including lung cancer and benign cases, 117 cases were used to train the FNN. Tens of cases were sampled from the 117 cases at random as training set, and the other cases as validation set. The validation set was used to test the performance of the trained FNN. The performance of the FNN with GMF was compared with that of the FNN with triangle membership function (TMF). The performance of the FNN with GMF was better than that of the FNN with TMF.

关键词

高斯隶属度函数/模糊神经网络/三角形隶属度函数/肺癌诊断

Key words

Gauss membership function/ fuzzy neural network/ triangle membership function/lung cancer diagnosis

分类

信息技术与安全科学

引用本文复制引用

徐力平,张华杰,吴逸明..高斯隶属度函数模糊神经网络在肺癌诊断中的应用[J].郑州大学学报(理学版),2011,43(1):95-98,4.

基金项目

国家自然科学基金资助项目,编号30571552. ()

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量4
|
下载量0
段落导航相关论文