| 注册
首页|期刊导航|采矿与安全工程学报|基于加权LS-SVM时间序列短期瓦斯预测研究

基于加权LS-SVM时间序列短期瓦斯预测研究

乔美英 马小平 兰建义 王莹

采矿与安全工程学报2011,Vol.28Issue(2):310-314,5.
采矿与安全工程学报2011,Vol.28Issue(2):310-314,5.

基于加权LS-SVM时间序列短期瓦斯预测研究

Time Series Short-Term Gas Prediction Based on Weighted LS-SVM

乔美英 1马小平 2兰建义 1王莹3

作者信息

  • 1. 中国矿业大学信息与电气工程学院,江苏,徐州,221116
  • 2. 河南理工大学电气工程与自动化学院,河南,焦作,454000
  • 3. 河南理工大学能源科学与工程学院,河南,焦作,454000
  • 折叠

摘要

Abstract

The neural network gas prediction model is poor in generalization performance and easy in falling into the local optimal value. In order to overcome these shortcomings, we propose the time series gas prediction method of least squares support vector machine (LS-SVM).However, in the LS-SVM case, the sparseness and robustness may lose, and the estimation of the support values is optimal only in the case of a Gaussian distribution of the error variables.So, this paper proposes the weighted LS-SVM to overcome these two drawbacks. Meanwhile,the optimal embedding dimension and delay time of time series are obtained by the smallest differential entropy method. On this basis, multi-step time series prediction algorithm steps are given based on the weighted LS-SVM. Finally, the data of gas outburst in working face of Hebi 10th mine is adopted to validate this model. The results show that the predict effect of shortterm the face gas emission is better using the weighted LS-SVM model than using LS-SVM by MATLAB 7.1.

关键词

加权LS-SVM/时间序列/鲁棒性/瓦斯预测

Key words

weighted LS-SVM/ time series/ robustness/ gas prediction

分类

矿业与冶金

引用本文复制引用

乔美英,马小平,兰建义,王莹..基于加权LS-SVM时间序列短期瓦斯预测研究[J].采矿与安全工程学报,2011,28(2):310-314,5.

基金项目

国家自然科学基金项目(60974126) (60974126)

江苏省自然科学基金项目(BK2009094) (BK2009094)

采矿与安全工程学报

OA北大核心CSTPCD

1673-3363

访问量0
|
下载量0
段落导航相关论文