| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|基于DE优化SVR的锂离子电池剩余容量预测

基于DE优化SVR的锂离子电池剩余容量预测

唐超 曹龙汉 赵泽鑫 何俊强 吴珍毅

重庆理工大学学报(自然科学版)2011,Vol.25Issue(3):92-96,5.
重庆理工大学学报(自然科学版)2011,Vol.25Issue(3):92-96,5.

基于DE优化SVR的锂离子电池剩余容量预测

SVR Optimized by DE Optimization Algorithm for Remaining Capacity Forecasting

唐超 1曹龙汉 1赵泽鑫 2何俊强 1吴珍毅1

作者信息

  • 1. 重庆通信学院控制工程重点实验室,重庆,400035
  • 2. 煤炭科学研究总院重庆研究院,重庆,400039
  • 折叠

摘要

Abstract

In the analysis of support vector machine for regression (SVR) on the model of remaining capacity with nonlinearity, aimed at the puzzle of selection of SVR's parameters, the paper proposed a predictive model for remaining capacity of lithium ion batteries. The model was based on the SVR with parameter optimized by differential evolution (DE) algorithm. DE has powerful global searching ability, which would be applied to the optimization of SVR's parameters, and the predictive precision of the lithium ion batteries capacity was compared between DE algorithm and particle swarm optimization (PSO) algorithm. Simulation results show that DE-SVR is better than PSO-SVR in prediction of lithium ion batteries capacity.

关键词

支持向量机回归/微分进化算法/粒子群优化算法/参数选择/锂离子电池/容量预测

Key words

support vector machine for regression/ differential evolution algorithm/ particle swarm optimization (PSO) algorithm/ parameter selection/ lithium ion batteries/ capacity prediction

分类

动力与电气工程

引用本文复制引用

唐超,曹龙汉,赵泽鑫,何俊强,吴珍毅..基于DE优化SVR的锂离子电池剩余容量预测[J].重庆理工大学学报(自然科学版),2011,25(3):92-96,5.

基金项目

国防科研项目(TZ-CQTY-Y-A-2010-002) (TZ-CQTY-Y-A-2010-002)

2010年重庆高校优秀成果转化项目(Kjzh10219) (Kjzh10219)

重庆理工大学学报(自然科学版)

OACSTPCD

1674-8425

访问量0
|
下载量0
段落导航相关论文