| 注册
首页|期刊导航|计算机工程|用于不平衡数据分类的FE-SVDD算法

用于不平衡数据分类的FE-SVDD算法

方景龙 王万良 何伟成

计算机工程2011,Vol.37Issue(6):157-158,161,3.
计算机工程2011,Vol.37Issue(6):157-158,161,3.DOI:10.3969/j.issn.1000-3428.2011.06.054

用于不平衡数据分类的FE-SVDD算法

FE-SVDD Algorithm for Imbalanced Data Classification

方景龙 1王万良 2何伟成1

作者信息

  • 1. 浙江工业大学计算机科学与技术学院,杭州,310023
  • 2. 杭州电子科技大学图形图像研究所,杭州,310018
  • 折叠

摘要

Abstract

It usually exists bias when existing Support Vector Data Description(SVDD) algorithm solves the problem of imbalanced data sets.Aiming at this problem, this paper proposes FE-SVDD algorithm with improved imbalanced data classification. The feature extraction method based on Principal Component Analysis(PCA) is introduced. In this algorithm, the principal values are found respectively of the two classes of samples by using PCA. The penalty is given based on the information provided by the sizes of the two sample data and their values. It verifies the C of SVDD algorithm using artificial data and UCI datasets for the data imbalanced classification problem. Experiment results on artificial data sets and UCI data sets show the method's effectiveness.

关键词

模式分类/支持向量数据描述/不平衡数据集/特征提取/主成分分析

Key words

pattern classification/ Support Vector Data Description(SVDD)/ imbalanced data sets/ feature extraction/ Principal Component Analysis(PCA)

分类

信息技术与安全科学

引用本文复制引用

方景龙,王万良,何伟成..用于不平衡数据分类的FE-SVDD算法[J].计算机工程,2011,37(6):157-158,161,3.

基金项目

国家自然科学基金资助项目(60874074) (60874074)

浙江省科技计划基金资助重点项目(2009C14032) (2009C14032)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文