| 注册
首页|期刊导航|辽宁石油化工大学学报|直和空间上对称微分算子自共轭域的辛几何刻画(Ⅵ)

直和空间上对称微分算子自共轭域的辛几何刻画(Ⅵ)

王志敬

辽宁石油化工大学学报2011,Vol.31Issue(2):73-76,4.
辽宁石油化工大学学报2011,Vol.31Issue(2):73-76,4.DOI:10.3696/j.issn.1672-6952.2011.02.019

直和空间上对称微分算子自共轭域的辛几何刻画(Ⅵ)

Symplectic Geometry Characterization of Self-Adjoint Domains for Symmetric Differential Operators in Direct Sum Spaces(Ⅵ)

王志敬1

作者信息

  • 1. 辽宁石油化工大学理学院,辽宁抚顺,113001
  • 折叠

摘要

Abstract

Interior singular points were mainly studied in this paper,which means the characterization of self-adjoint domains for symmetric differential operators in the direct sum spaces. There exist the different deficiency indices at (n, n)singular points. Therefore by constructing different quotient spaces and using the method of symplectic geometry, it is possible to study self-adjoint extensions of symmetric differential operators in the direct sum spaces. The classification and description of complete Lagrangian submanifold that corresponds with self-adjoint domains of second order differential operators were also produced .

关键词

微分算子/辛空间/Lagrangian子流型/奇异点/直和空间

Key words

Differential operators/Symplectic spaces/ Lagrangian submanifold/ Singular points/ Direct sum spaces

分类

数理科学

引用本文复制引用

王志敬..直和空间上对称微分算子自共轭域的辛几何刻画(Ⅵ)[J].辽宁石油化工大学学报,2011,31(2):73-76,4.

基金项目

辽宁省教育厅高校科研项目(2004F100) (2004F100)

辽宁石油化工大学重点学科建设资助项目(K200409). (K200409)

辽宁石油化工大学学报

1672-6952

访问量0
|
下载量0
段落导航相关论文