| 注册
首页|期刊导航|计算机应用与软件|一种改进的图聚类的相异度度量方法

一种改进的图聚类的相异度度量方法

王小黎

计算机应用与软件2011,Vol.28Issue(5):139-141,3.
计算机应用与软件2011,Vol.28Issue(5):139-141,3.

一种改进的图聚类的相异度度量方法

AN IMPROVED DISSIMILARITY METRICS APPROACH FOR GRAPH CLUSTERING

王小黎1

作者信息

  • 1. 中原工学院经济管理学院,河南,郑州,450007
  • 折叠

摘要

Abstract

In this paper the agglomerative clustering concept is employed to conduct the clustering analysis, by combining in circulation two categories with least distance, the problem of the max-min correlativity graph clustering method is improved, of which when aiming at the situation that in the graph two neighbouring nodes both have quite big correlativity but the same nodes they connecting to are extremely few,then usual clustering method is hard to solve it that the two nodes are at big correlativity whereas actually their similarities are low. At last,the correctness and effectiveness of the agglomerative clustering algorithm is validated with experiment.

关键词

相异度/度量/层次聚类方法/模块性

Key words

Dissimilarity/ Metrics /Method of hierarchical clustering/ Modularity

引用本文复制引用

王小黎..一种改进的图聚类的相异度度量方法[J].计算机应用与软件,2011,28(5):139-141,3.

基金项目

河南省自然科学基金(0411011400) (0411011400)

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量1
|
下载量0
段落导航相关论文