| 注册
首页|期刊导航|计算机工程与科学|粒子群优化神经网络在动态手势识别中的应用

粒子群优化神经网络在动态手势识别中的应用

李文生 姚琼 邓春健

计算机工程与科学2011,Vol.33Issue(5):74-79,6.
计算机工程与科学2011,Vol.33Issue(5):74-79,6.DOI:10.3969/j.issn.1007-130X.2011.05.015

粒子群优化神经网络在动态手势识别中的应用

Application of the BP Neural Network Based on PSO in Dynamic Gesture Recognition

李文生 1姚琼 1邓春健1

作者信息

  • 1. 电子科技大学中山学院计算机工程系,广东中山,528402
  • 折叠

摘要

Abstract

In order to improve the training speed and identification accuracy of dynamic gesture, a method of gesture recognition based on the particle swarm optimization(PSO) BP neural network is put forward.First, a set of dynamic gestures is defined for Human-Machine Interaction (HMI).The engenvectors vectors of dynamic gestures are extracted as the input of the BP neural network on the basis of obtaining the trajectories of moving fingertips.An improved PSO algorithm is used to train the BP neural network and get the weights/thresholds of the network.Finally, the gestures based on machine vision are recognized through the trained BP neural network.The experimental results show that the proposed PSO algorithm can enhance the speed and precision of network training, and improve the accuracy of dynamic gesture recognition.

关键词

机器视觉/BP神经网络/动态手势识别/粒子群

Key words

machine vision/ BP neural network/ dynamic gesture recognition/ particle swarm optimization

分类

信息技术与安全科学

引用本文复制引用

李文生,姚琼,邓春健..粒子群优化神经网络在动态手势识别中的应用[J].计算机工程与科学,2011,33(5):74-79,6.

基金项目

广东省自然科学基金资助项目(8152840301000009) (8152840301000009)

广东省科技计划资助项目(200913030803031) (200913030803031)

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文