| 注册
首页|期刊导航|计算机应用研究|基于改进扩展卡尔曼粒子滤波的目标跟踪算法

基于改进扩展卡尔曼粒子滤波的目标跟踪算法

王华剑 景占荣 羊彦

计算机应用研究2011,Vol.28Issue(5):1634-1636,1643,4.
计算机应用研究2011,Vol.28Issue(5):1634-1636,1643,4.DOI:10.3969/j.issn.1001-3695.2011.05.010

基于改进扩展卡尔曼粒子滤波的目标跟踪算法

Target tracking algorithm based on improved extend Kalman particle filter

王华剑 1景占荣 1羊彦1

作者信息

  • 1. 西北工业大学,电子信息学院,西安,710072
  • 折叠

摘要

Abstract

Considering the problem of poor tracking accuracy and particle degradation in the traditional particle filter algorithm, discussed a new improved particle filter algorithm with the Markov chain Monte Carlo (MCMC) and extended particle filter.The algorithm used extend Kalman filter to generate a proposal distribution, which could integrate latest observation information to get the posterior probability distribution that was more in line with the true state.Meanwhile, optimized the algorithm by MCMC sampling method, which made the particles more diverse.The simulation results show that the improved extend Kalman particle filter solves particle degradation effectively and improves tracking accuracy.

关键词

目标跟踪/粒子滤波/扩展卡尔曼滤波/马尔可夫链蒙特卡罗方法/非线性系统

Key words

target tracking/ particle filter(PF)/ extend Kalman filter/ Markov chain Monte Carlo (MCMC)/ nonlinear system

分类

信息技术与安全科学

引用本文复制引用

王华剑,景占荣,羊彦..基于改进扩展卡尔曼粒子滤波的目标跟踪算法[J].计算机应用研究,2011,28(5):1634-1636,1643,4.

基金项目

国家自然科学基金资助项目(60501004) (60501004)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量5
|
下载量0
段落导航相关论文