| 注册
首页|期刊导航|计算机应用研究|基于云模型的最接近支持向量机增量学习方法

基于云模型的最接近支持向量机增量学习方法

金珠 马小平

计算机应用研究2011,Vol.28Issue(5):1685-1687,1691,4.
计算机应用研究2011,Vol.28Issue(5):1685-1687,1691,4.DOI:10.3969/j.issn.1001-3695.2011.05.026

基于云模型的最接近支持向量机增量学习方法

Incremental PSVM learning algorithm based on cloud model

金珠 1马小平1

作者信息

  • 1. 中国矿业大学,信息与电气工程学院,江苏,徐州,221008
  • 折叠

摘要

Abstract

Aiming at the limitations of incremental learning in classical SVM, this paper proposed an incremental PSVM ( proximal SVM) learning algorithm based on cloud model.Employed the fast learning ability of PSVM to yield the initial classification hyperplane, and then, reduced all training datasets by using k-NN method and the plane.After that, utilized cloud model to directly discriminate analysis on the reduced dataset.The simple algorithm, with less computational time and better anti-noise ability, could well embody the distribution of incremental samples and could be solve without iteration.Experiment results show that the algorithm can not only keep well classification accuracy and generalization ability, but also improve the training speed.

关键词

支持向量机/云模型/分类/增量学习

Key words

support vector machines(SVM)/ cloud model/ classification/ incremental learning

分类

信息技术与安全科学

引用本文复制引用

金珠,马小平..基于云模型的最接近支持向量机增量学习方法[J].计算机应用研究,2011,28(5):1685-1687,1691,4.

基金项目

国家自然科学基金资助项目(60974126,60974050) (60974126,60974050)

江苏省自然科学基金资助项目(BK2009094) (BK2009094)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文