| 注册
首页|期刊导航|计算机工程|基于改进DBSCAN算法的文本聚类

基于改进DBSCAN算法的文本聚类

蔡岳 袁津生

计算机工程2011,Vol.37Issue(12):50-52,55,4.
计算机工程2011,Vol.37Issue(12):50-52,55,4.DOI:10.3969/j.issn.1000-3428.2011.12.017

基于改进DBSCAN算法的文本聚类

Text Clustering Based on Improved DBSCAN Algorithm

蔡岳 1袁津生1

作者信息

  • 1. 北京林业大学信息学院,北京100083
  • 折叠

摘要

Abstract

Most clustering algorithms can not meet the demand of speed and self-adapting about text clustering. In this paper, after fundamental theory and implement are expounded, the idea of creating an algorithm based improved DBSCAN is proposed. The least square method is used for decreasing divisions and the cluster-tree is created to gain a strong self-adapting of the algorithm. According to the data from an experiment mentioned in this paper, the self-adapting algorithm is feasible and involves better performance than DB SCAN.

关键词

DBSCAN算法/文本聚类/最小二乘法/簇关系树

Key words

DBSCAN algorithm/ text clustering/ least square method/ cluster-tree

分类

信息技术与安全科学

引用本文复制引用

蔡岳,袁津生..基于改进DBSCAN算法的文本聚类[J].计算机工程,2011,37(12):50-52,55,4.

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文