| 注册
首页|期刊导航|数学杂志|基于一个抽球模型的组合恒等式及组合解释

基于一个抽球模型的组合恒等式及组合解释

谭明术

数学杂志2011,Vol.31Issue(4):665-669,5.
数学杂志2011,Vol.31Issue(4):665-669,5.

基于一个抽球模型的组合恒等式及组合解释

COMBINATORIAL IDENTITY AND COMBINATORIAL EXPLANATION BASED ON A DRAWING BALL MODEL

谭明术1

作者信息

  • 1. 重庆三峡学院数学系,重庆万州404100
  • 折叠

摘要

Abstract

Two cases that s black or white balls will be placed back with drawn ball are studied. By probabilistic method, combinatorial identities or combinatorial explanations related to the Stirling number of the first kind and generalized binomial coefficient with repetition are given by considering the probability of drawing k white balls in n trials and the probability of that n trials are required until the kth white ball is drawn. Some infinite summations on the Stirling number and binomial coefficients are generalized.

关键词

概率模型/组合恒等式/Stirling数/非中心Stirling数

Key words

probabilistic model/combinatorial identity/Stirling number/noncentral Stirling number

分类

数理科学

引用本文复制引用

谭明术..基于一个抽球模型的组合恒等式及组合解释[J].数学杂志,2011,31(4):665-669,5.

数学杂志

OA北大核心CSCDCSTPCD

0255-7797

访问量0
|
下载量0
段落导航相关论文