| 注册
首页|期刊导航|电子学报|一种基于核SMOTE的非平衡数据集分类方法

一种基于核SMOTE的非平衡数据集分类方法

曾志强 吴群 廖备水 高济

电子学报2009,Vol.37Issue(11):2489-2495,7.
电子学报2009,Vol.37Issue(11):2489-2495,7.

一种基于核SMOTE的非平衡数据集分类方法

A Classfication Method For Imbalance Data Set Based on Kernel SMOTE

曾志强 1吴群 2廖备水 2高济2

作者信息

  • 1. 厦门理工学院计算机科学与技术系,福建厦门,361024
  • 2. 浙江大学计算机科学与技术学院,浙江杭州,310027
  • 折叠

摘要

Abstract

An approach based on kernel SMOTE (Synthetic Minority Over-sampling Technique) to solve classification on imbalance data set by Support Vector Machine (SVM) is presented. The method first oversamples the minority class in feature space by kernel SMOTE algorithm, then the pre-images of the synthetic instances are found based on a distance relation between feature space and input space. Finally, these pre-images are appended to the original data set to train a SVM. Experiments on real data sets indicate that compared with SMOTE approach, the samples constructed by the kernel SMOTE algorithm have the higher quality.As a result, the effectiveness of classification by SVM on imbalance data set is unproved.

关键词

非平衡数据集/支持向量机/输入空间/特征空间/原像

Key words

imbalance data set/ support vector machine/ input space/ feature space /pre-image

分类

信息技术与安全科学

引用本文复制引用

曾志强,吴群,廖备水,高济..一种基于核SMOTE的非平衡数据集分类方法[J].电子学报,2009,37(11):2489-2495,7.

基金项目

国家自然科学基金项目(No.60773177) (No.60773177)

福建省青年人才项目(No.2008F3108) (No.2008F3108)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文