| 注册
首页|期刊导航|计算机工程与应用|全变异粒子群优化算法

全变异粒子群优化算法

陈建超 胡桂武

计算机工程与应用2009,Vol.45Issue(32):25-26,47,3.
计算机工程与应用2009,Vol.45Issue(32):25-26,47,3.DOI:10.3778/j.issn.1002-8331.2009.32.008

全变异粒子群优化算法

Whole Mutation Particle Swarm Optimization

陈建超 1胡桂武1

作者信息

  • 1. 广东商学院,数学与计算科学学院,广州,510320
  • 折叠

摘要

Abstract

To overcome the premature and low convergence precision of particle swarm optimization,the whole Mutation Particle Swarm Optimization (MPSO) is proposed with whole mutation and the maximum velocity self-adjustment strategy,whole mutation strategy is adopted when PSO encounters premature,the particle is considered as chromosome and every gene has the same prob-ability to be mutated,the MPSO can overcome the local convergence of PSO and improves its convergence precision,the novel algorithm is used to solve the Shubert function optimization problem,the result shows that the algorithm is effective.

关键词

粒子群优化算法/早熟/变异/基因

Key words

Particle Swarm Optimization (PSO) / premature/ mutation / gene

分类

计算机与自动化

引用本文复制引用

陈建超,胡桂武..全变异粒子群优化算法[J].计算机工程与应用,2009,45(32):25-26,47,3.

基金项目

国家自然科学基金(the National Natural Science Foundation of China under Grant No.60873017) (the National Natural Science Foundation of China under Grant No.60873017)

广东省自然科学基金(the Natural Science Foundation of Guangdong Province of China under Grant No.06301003). (the Natural Science Foundation of Guangdong Province of China under Grant No.06301003)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文