物理学报2009,Vol.58Issue(11):7525-7531,7.
一个分段Sprott系统及其混沌机理分析
A piecewise-linear Sprott system and its chaos mechanism
摘要
Abstract
In this paper, a piecewise-linear Sprott system is proposed and its chaos mechanism is analyzed. According to the Shilnikov theorem, on the condition that the basic characteristics of heteroclinic orbit, Shilnikov inequality and eigenvalue equation are satisfied, by finding a heteroclinic orbit formed by three geometric invariant sets, namely the unstable manifold, heteroclinic point, and stable manifold, a set of real parameters in accordance with the condition of existence of heteroclnic orbit are obtained for this chaotic system. Thus, the existence of heteroclnic orbit has been proved. Finally, according to this set of real parameters, the circuit design and experimental verification has been carried out.关键词
分段Sprott系统/Shilnikov定理/异宿轨道/电路实验Key words
piecewise-linear Sprott system/Shilnikov theorem/beteroclinic orbit/circuit experiment分类
数理科学引用本文复制引用
陈建军,禹思敏..一个分段Sprott系统及其混沌机理分析[J].物理学报,2009,58(11):7525-7531,7.基金项目
国家自然科学基金(批准号:60572073,60871025),广东省自然科学基金(批准号:8151009001000060,8351009001000002)和广东省科技计划项目(批准号:2009B010800037)资助的课题.Project supported by the National Natural Science Foundation of China (Grant Nos. 60572073, 60871025), the Natural Science Foundation of Guangdong Province (Grant Nos. 8151009001000060, 8351009001000002) and the Science and Technology Plan Project of Guangdong Province (Grant No-200913010800037). (批准号:60572073,60871025)